The Tale of the Great Green (not Green Great) Dragon: How to puzzle about adjectives... for science!

Meaghan Fowlie mfowlie@ucla.edu – meaghanfowlie.com

UCLA Linguistics

February 2, 2015 SFSU "I first tried to write a story when I was about seven. It was about a dragon. I remember nothing about it except a philological fact. My mother said nothing about the dragon, but pointed out that one could not say 'a **green great** dragon', but had to say 'a **great green** dragon'. I wondered why, and still do. The fact that I remember this is possibly significant, as I do not think I ever tried to write a story again for many years, and was taken up with language."

- J.R.R. Tolkien in a letter to W.H Auden (Carpenter, 1981)

http://img2.wikia.nocookie.net/_cb20070313193828/forgottenrealms/images/0/01/Green_dragon.JPG

Roadmap

- Adjective data
- @ Grammars
- 3 grammars for adjectives
- A bit of formalisation

Adjective ordering

- (1) a. a **great green** dragon
 - b. *a **green great** dragon
- (2) a. The big bad wolf
 - b. *The bad big wolf
- (3) a. a good red heavy table
 - b. *a red heavy good table
- (4) a. The small ancient triangular green Irish pagan metal artifact
 - b. *The metal green ancient triangular pagan Irish small artifact

What is linguistics?

- A natural science
- Object of study: human language

Mystery: This baby is learning things about her native language that generations of linguists haven't been able to work out yet.

- What is it about the human brain that makes this possible?
- What is it about babies that makes this possible?
- What is it about human language that makes this possible?

Adjectives across languages

- (5) a. dugacka uska ulica *uska dugacka ulica long narrow street *narrow long street (Serbo-Croat)
 - b. lyhyt ohut terä *ohut lyhyt terä short thin blade *thin short blade (Finnish)
 - en lang vid kjol *en vid lang kjol
 a long wide skirt *a wide long skirt (Swedish)
 - d. haf hir poeth *haf poeth hir summer long hot *summer hot long (Welsh)

Data from Scott (2002)

Corpus data

Google N-grams

Adjective classes

Tendency across languages (partial):

(6) D Size Age Shape Color Origin Material N a big old round red indian rubber bal

Why?

 We don't know. Some attempts to account for it on general semantic grounds, but not entirely convincing

How?

- What kind of grammar do we need to model this?
- Can/should we build this general ordering into the universal structure of grammars to account for the cross-linguistic parallels?

Things to account for

- You can have lots of modifiers on one noun (good heavy red table)
- Some orders just sound weird (*pine old floorboards)
- Sometimes switching the order changes nothing (beautiful cute baby, cute beautiful baby)
- Some orders change the meaning (blistered varnished wood = varnished wood that got blistered, varnished blistered wood = wood that was blistered and then varnished
- Semantic adjective classes are similarly ordered across languages
- Prepositional phrases and relative clauses come after the noun (dog with long ears, baby who cried the whole flight)

More things to account for

- Some languages allow adjectives to repeat (my love is like a red red rose)
- Modifiers are nearly always optional (my love is like a rose)
- Occasionally they're required (John makes a good father, *John makes a father)
- Prepositional phrases and relative clauses are not strictly ordered. (A linguist with tin ear at a conference, A linguist at a conference with a tin ear)
- Modifiers can themselves be modified (a surprisingly short basketball player)
- Some things can be both modifiers and "arguments" (They seem nice, He put it on the table)

What's a Grammar?

Definition (Grammar)

A grammar is just a set of rules for making words or sentences

Example: Hawai'ian words

- The sounds available are: i,e,a,o,u,m,n,p,k,?,h,w,l
- ② Divide the sounds into two sets, vowels and consonants, as follows:

Vowels i,e,a,o,u

Consonants m,n,p,k,?,h,w,I

You can make a word by putting together a sequence of vowels and consonants, but you can never put two consonants next to each other, and every word ends in a vowel.

ahi, kahi, uahi, uahi, aloha, huali, kakahi, uai, uhai, kuai, wawai, hawai?i, mele, kalikimaka, *klikmak, *krısməs, aaaaaaa

A Grammar for Modifiers

Suppose these are our words: *a, big, great, bad, red, green, Canadian, wolf, rose, dragon*Divide them into sets:

D a

A big, great, bad, red, green, Canadian

N wolf, rose, dragon

Rules for making NPs:

- an N is an NP
- ② if you have an NP, you can put an A before it, and that's an NP too.

wolf is an N so wolf is an NP big is an A and wolf is an NP, so big wolf is an NP

A Grammar for Modifiers

Rules for making DPs:

• if you have a D, you can follow it with an NP, and you have a DP big wolf is an NP and a is a D, so a big wolf is a DP.

Trees

wolf is an N so wolf is an NP

big is an A and wolf is an NP, so big wolf is an NP

big wolf is an NP and a is a D, so a big wolf is a DP.

A Grammar for Modifiers

Tolkien's problem:

A Grammar for Modifiers

Problems we've solved:

- You can have lots of modifiers on one noun (good red heavy table)
- Sometimes switching the order changes nothing (a beautiful cute baby, a cute beautiful baby)
- Some languages allow adjectives to repeat (my love is like a red red rose)
- Modifiers are nearly always optional (my love is like a rose)

Suppose these are our words: a, big, great, bad, good, red, green, Canadian, wolf, rose, dragon
Divide them into sets:

```
D a
SIZE big, great
GOOD bad, great
COL red, green
NAT Canadian
```

N wolf, rose, dragon

Rules for making natPs:

- If you have an N, you can put a NAT before it to make a NATP
- If you have a NATP, you can put a NAT before it to make a NATP eg: wolf is an N and Canadian is a NAT, so Canadian wolf is a NATP

Rules for making colPs:

- If you have an N, you can put a COL before it to make a COLP
- ② If you have a NATP, you can put a COL before it to make a COLP
- $\ensuremath{\mathbf{3}}$ If you have a COLP, you can put a COL before it to make a COLP

eg: wolf is an N and red is a COL, so red wolf is a COLP
eg: Canadian wolf is a NATP and red is a COL, so red Canadian wolf is a COLP

Rules for making goodPs:

- If you have an N, you can put a GOOD before it to make a GOODP
- ② If you have a NATP, you can put a GOOD before it to make a GOODP
- If you have a COLP, you can put a GOOD before it to make a GOODP
- If you have a GOODP, you can put a GOOD before it to make a GOODP

eg: red wolf is a COLP and bad is a GOOD, so bad red wolf is a GOODP

Rules for making sizePs:

- If you have an N, you can put a SIZE before it to make a SIZEP
- ② If you have a NATP, you can put a SIZE before it to make a SIZEP
- If you have a COLP, you can put a SIZE before it to make a SIZEP
- If you have a GOODP, you can put a SIZE before it to make a SIZEP
- If you have a SIZEP, you can put a SIZE before it to make a SIZEP

eg: wolf is an N and small is a SIZE, so small wolf is a SIZEP

Rules for making DPs:

- 1 If you have an N, you can put a D before it to make a DP
- ② If you have a NATP, you can put a D before it to make a DP
- If you have a COLP, you can put a D before it to make a DP
- If you have a GOODP, you can put a D before it to make a DP
- 1 If you have a SIZEP, you can put a D before it to make a DP

small wolf is a SIZEP and a is a D so a small wolf is a DP

Tolkien's problem:

All the "if you have a sizeP..." rules:

- If you have a SIZEP, you can put a D before it to make a DP
- If you have a SIZEP, you can put a SIZE before it to make a SIZEP

Problems we've solved:

- You can have lots of modifiers on one noun (good heavy red table)
- Sometimes switching the order changes nothing (beautiful cute, cute beautiful baby)
- Some languages allow adjectives to repeat (my love is like a red red rose)
- Modifiers are nearly always optional (my love is like a rose)
- Some orders just sound weird (*pine old floorboards)

This grammar has 19 rules! Try I only had 3.

It seems like everything we need to know is contained in the sizeP rules:

- If you have an N, you can put a SIZE before it to make a SIZEP
- If you have a NATP, you can put a SIZE before it to make a SIZEP
- If you have a COLP, you can put a SIZE before it to make a SIZEP
- If you have a GOODP, you can put a SIZE before it to make a SIZEP
- If you have a SIZEP, you can put a SIZE before it to make a SIZEP

Hierarchy

Suppose these are our words: a, big, great, bad, good, red, green, Canadian, wolf, rose, dragon
Divide them into sets:

D a

A big, great, bad, good, red, green, Canadian

N wolf, rose, dragon

Give the A's numbers:

A-4 big, great

SIZE

A-3 bad, good

GOODNESS

A-2 red, green

COLOUR

A-1 Canadian

NATIONALITY

Rules for making NPs:

- an N is also an NP-0
- ② Suppose we have a number i. If you have an NP-i, you can put an A-j before it to make an NP-j, but only if j is a least as high a number as i

wolf is an N so wolf is an NP-0 big is an A-4 and wolf is an NP-0, so big wolf is an NP-4, since 4 is higher than 0.

Rules for making DPs:

Suppose we have a number i. If you have an NP-i, you can put a D before it to make a DP

big wolf is an NP-4 and a is a D, so a big wolf is a DP.

Tolkien's problem:

Problems we've solved:

- You can have lots of modifiers on one noun (good heavy red table)
- Some orders just sound weird (*pine old floorboards)
- Sometimes switching the order changes nothing (beautiful cute, cute beautiful baby)
- Some languages allow adjectives to repeat (my love is like a red red rose)
- Modifiers are nearly always optional (my love is like a rose)
- Modifiers can themselves be modified (a surprisingly short basketball player)
- Some things can be both modifiers and "arguments" (They seem nice, He put it on the table)

Computational complexity

Our third grammar is significantly smaller than our second grammar. For k hierarchies, the size of the lexicon is bounded below by a polynomial function of the depths of the hierarchies as follows. For k = number of hierarchies in Lex, $l_i =$ number of levels in hierarchy i, $x_i =$ number of Lls at level 0 of hierarchy i (by Gauss's function for adding sequences):

$$|\text{Lex}'| \ge \sum_{i=1}^{k} 1/2(I_i^2 + I_i) + x_i$$

- That is, the size of the lexicon in encoded order is a polynomial function of the depths of the hierarchies.
- The size of the lexicon in encoded hierarchy is linear in the depths of the hierarchies.

Problems we can extend this approach to solve:

- Some orders change the meaning (blistered varnished wood = varnished wood that got blistered, varnished blistered wood = wood that was blistered and then varnished
- Prepositional phrases and relative clauses come after the noun (dog with long ears, baby who cried the whole flight)
- Prepositional phrases and relative clauses are not strictly ordered. (A linguist with tin ear at a conference, A linguist at a conference with a tin ear)

De-simplifying

- These are context-free grammars
- Context free isn't powerful enough to model human languages
- →Embed this solution in a Minimalist Grammar

Minimalist Grammars

Example: Merge

(Stabler, 1997; Chomsky, 1995)

Minimalist Grammars

Example: Move

Minimalist Grammars with Adjunction: Tolkien's problem

Fowlie (2014)

Minimalist Grammars with Adjunction: Tolkien's problem

Fowlie (2014)

Minimalist Grammars with Adjunction

Code interlude...

Computation

Advantages of a computational approach:

- Telling a computer our theory forces us to think carefully about our claims
- We can use the computer to check our work
- Once we've defined our ideas mathematically, we can use what is already known about math to learn new things about our ideas
- Universals of human language almost certainly include mathematical properties of grammars – in fact, these could end up being the only universals
- With a carefully defined grammar, we can set a computer to parse for us
- We can define learning algorithms to try to model how babies might learn language

Future/ongoing research

- ullet How do people learn adjuncts? o Ongoing artificial language learning experiments
- What are the mathematical properties of MGAs? → Not all the same as MGs!
- ullet Can songbirds have human-like grammars? o Collaborative work with linguists, CS, biologists

Conclusion

- Adjectives have a default ordering
- Semantic classes of adjectives are ordered (fairly) universally across languages
- Proposal: this order is built directly into the grammar perhaps it is even somehow built into our brains, so that babies don't even have to learn it
- Modelling adjuncts accurately in Minimalist Grammars allows for tractable parsing, regular derivation tree languages
- Thinking computationally forces clarity and explicitness in syntactic research; syntax will very soon become more useful in industry as the tasks being tackled become harder and more localised

References

- Carpenter, Humphrey. 1981. *The letters of JRR Tolkien*, volume 144. Boston: Houghton Mifflin.
- Chomsky, Noam. 1995. *The minimalist program*. Cambridge, MA: MIT Press.
- Cinque, Gugliemo. 1999. Adverbs and functional heads: a cross-linguistic perspective. Oxford studies in comparative syntax. Oxford: Oxford University Press.
- Fowlie, Meaghan. 2014. Adjuncts and minimalist grammars. In *Proceedings of Formal Grammar 2014*, ed. Glyn Morrill, Reinhard Muskens, Rainer Osswald, and Frank Richter, volume 8612 of *Lecture Notes in Computer Science*.
- Scott, Gary-John. 2002. Stacked adjectival modification and the structure of nominal phrases. In *Functional structure in DP and IP: The cartography of syntactic structures*, volume 1, 91–120. Oxford University Press.
- Stabler, Edward. 1997. Derivational minimalism. Logical Aspects of Computational Linguistics 68–95.

Thank you!

